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A new generation algorithm of two-dimensional triple-codeweight asymmetric optical orthogonal codes for
optical code division multiple access (OCDMA) networks is proposed. The code cardinality is obtained
and the error-probability performance for corresponding OCDMA system is analyzed. The codes with
two constraints (i.e., auto- and cross-correlation properties) being unequal are taken into account. On
the premise of fixed system resources, the code cardinality can be significantly improved. By analysis
of the error-probability performance, it is shown that the codes with different parameters have different
performances. Therefore, this type of codes can be applied to support diverse quality of service (QoS)
and satisfy the quality requirement of different multimedia or distinct users, and simultaneously make the
better use of bandwidth resources in optical networks.
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Optical code division multiple access (OCDMA) has been
considered as a competitive candidate for the multiple ac-
cess scheme in the future all-optical networks, especially
optical access networks, due to its attractive features such
as asynchronous access, dynamic bandwidth assignment,
ability to support multimedia services, bursty traffic,
and so on. The user address code with better perfor-
mance is the basis for implementing an OCDMA net-
work. The result in previous work on optical orthogonal
codes (OOCs) considers the code with the same auto-
and cross-correlation constraints, until a new asymmet-
ric OOC has been developed[1]. The two constraints
have different effects on a system performance, because
the auto-correlation constraint contributes only to sys-
tem synchronization and the cross-correlation constraint
affects both synchronization and operation. According to
the distinction between these two constraints, Yang et al.

developed a new algorithm to generate one-dimensional
(1D) constant-weight OOC with unequal correlation con-
straints (i.e., λa > λc)

[1] through letting the auto-
correlation constraint exceed the cross-correlation con-
straint, which can ensure the system dependability by
improving the code cardinality.

To support diverse quality of service (QoS) require-
ments in OCDMA networks, a double-codeweight OOC
technique[2] was proposed. However, this double-weight
OOC only supports two classes of services and cannot
satisfy QoS of different multimedia (e.g., data, voice, and
video). In addition, the codes mentioned above are all 1D
codes. Although their cardinalities have been improved,
compared with that of 1D symmetric code, they still have
some defects such as smaller cardinalities and worse cor-
relation performances.

In this letter, we extend the theories of 1D asymmet-
ric OOC and variable-weight OOC, and break through
the limitation of double-codeweight. As a result, a new

family of triple-codeweight 1D OOC is obtained, which
acts as time spreading pattern. Meanwhile, we em-
ploy one-coincident frequency-hopping code (OCFHC)
as wavelength-hopping pattern[3] and then a new two-
dimensional (2D) triple-codeweight asymmetric OOC
is gained. Using this code in OCDMA network, the
different QoS requirements for different multimedia or
distinct users can be satisfied. This scheme can make
the better use of network resources so that 2D triple-
codeweight asymmetric OOC has the potential to be
widely applied.

According to the effect of the two constrains on
system performance, in order to improve code car-
dinality, the auto-correlation constraint of 1D OOC
is relaxed such that we can construct a triple-
codeweight code where the codewords with large weights
have auto-correlation constraints equal to 2 and the
codewords with smaller weights still keep auto- and
cross-correlation of at most one. By extending
double-codeweight codewords to triple-codeweight code-
words, an (n, {wl, wm, ws}, {2, 1, 1}, 1, D) 1D OOC can
be obtained, where “l” represents large codeweight,
“m” indicates medium codeweight, “s” signifies small
codeweight, and D = {t0/(t0 + t1 + t2), t1/(t0 + t1 + t2),
t2/(t0 + t1 + t2)} with t0, t1, and t2 denoting the
numbers of codewords with large, medium, and small
codeweights, respectively. The small codeweight ws = w,
medium codeweight wm = w + 1, and large codeweight
wl = 2w, are chosen, and then the set of codeweight is
W = {2w, w + 1, w}. The 1D triple-codeweight code is
constructed as follows.

Let w = 2m + 1 and choose n to be a prime number
such that n = 2w2t0 + (w + 1)wt1 + w(w − 1)t2. If r
denotes the greatest common divisor of t0, t1, and t2, let
α be a primitive element of the Galois field GF (n) such
that
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{logα[αxj (α[2wt0+(w+1)t1+(w−1)t2]k − 1)] : 1 ≤ k ≤ m, j = 0, · · · , (t2/r) − 1},

{logα[αys(α[2wt0+(w+1)t1+(w−1)t2]k − 1)] : 1 ≤ k ≤ m, s = 0, · · · , (t1/r) − 1},

{logα[αzl(α[2wt0+(w+1)t1+(w−1)t2]k − 1)] : 1 ≤ k ≤ m, l = 0, · · · , (t0/r) − 1}

are all distinct modulo ((2m + 1)t0 + (m + 1)t1 + mt2)/r, where xj , ys, and zl are integers between 0 and (2m+1)t0+
(m + 1)t1 + mt2 − 1. Then, the blocks

{[α[(2m+1)t0+(m+1)t1+mt2]i/r+zl , α[(2m+1)t0+(m+1)t1+mt2]i/r+zl+2(2m+1)t0+2(m+1)t1+2mt2 , · · · ,

α[(2m+1)t0+(m+1)t1+mt2]i/r+zl+2m(2m+1)t0+2m(m+1)t1+4m2t2 ] : i = 0, · · · r − 1, l = 0, · · · , (t0/r) − 1},

{[0, α[(2m+1)t0+(m+1)t1+mt2]i/r+ys , α[(2m+1)t0+(m+1)t1+mt2]i/r+ys+2(2m+1)t0+2(m+1)t1+2mt2 , · · · ,

α[(2m+1)t0+(m+1)t1+mt2]i/r+ys+2m(2m+1)t0+2m(m+1)t1+4m2t2 ] : i = 0, · · · r − 1, l = 0, · · · , (t0/r) − 1},

{[α[(2m+1)t0+(m+1)t1+mt2]i/r+xj , α[(2m+1)t0+(m+1)t1+mt2]i/r+xj+(2m+1)t0+(m+1)t1+mt2 , · · · ,

α[(2m+1)t0+(m+1)t1+mt2]i/r+xj+(4m+1)(2m+1)t0+(4m+1)(m+1)t1+(4m+1)mt2 ] : i = 0, · · · r − 1, l = 0, · · · , (t0/r) − 1}

form an 1D triple-codeweight OOC.
As an example, we consider an (n, {6, 4, 3}, {2, 1, 1}, 1, {1/3, 1/3, 1/3})OOC. Let n be a prime number such that

n = 36t + 1 for an integer t (t is the number of codewords for each type of codeweight). Let α be a primitive element
of the Galois field GF (n) such that αq = αx(α6t − 1), αr = αy(α6t − 1), and αv = αz(α6t − 1) with x, y, and z any
integers between 1 and 6t − 1; q, r, and v are integers that satisfy all distinct modulo 6t − 1.

Code cardinality Φ = t0 + t1 + t2 = 3t achieves the upper bound in theory. Then, the code consists of the blocks

{[α6i, α6i+12t, α6i+24t] : i = 0, 1, · · · , t − 1}, {[0, α6i+y, α6i+y+12t, α6i+y+24t] : i = 0, 1, · · · , t − 1},

{[α6i+x, α6i+x+6t, α6i+x+12t, α6i+x+18t, α6i+x+24t, α6i+x+30t] : i = 0, 1, · · · , t − 1}.

Let n = 37 and t = 1. Choose α = 2 as a primi-
tive element of GF (37) and then 26 − 1 = 26 = 212,
2(26 − 1) = 15 = 213, 22(26 − 1) = 30 = 214, where
12, 13, 14 are all distinct modulo-5. The code consists
of the blocks {[1,10,26], [0,2,15,20], and [3,4,7,30,33,34]}
and therefore, the three codewords are

x0 = [0100000000100000000000000010000000000],

y0 = [1010000000000001000010000000000000000],

z0 = [0001100100000000000000000000001001100].

Similarly, let n = 73 and the code cardinality be 6. Let
α = 5, then there exist 512 − 1 = 524, (512 − 1)5 = 525,
and (512 − 1)52 = 526. The code consists of the
blocks {[25,54,67], [2,16,55], [0,5,28,40], [0,15,11,47],
[1,98,72,64,65], and [3,27,24,70,46,49]}. The codewords
pattern has been omitted for the sake of simplification.

Employing OCFHC with the number of wavelengths
m = pk as wavelength-hopping patterns and 1D triple-
codeweight OOC constructed above as time-spreading
patterns, namely, mapping OCFHC with m wave-
lengths into 1D time-spreading triple-codeweight OOC
based on the construction of 2D OCFHC/OOC[3,4],
2D (pk × n, W, A, λc, D) weight-hopping/time-spreading
(WH/TS) variable-weight OOC (VWOOC) with the car-
dinality of ΦOOCm2 can be obtained.

Based on the extension Galois field GF (23),
the constructed (23, 7, 1) OCFHC with codelength
L = 23 − 1 is shown in Table 1. Employ-
ing OCFHC as wavelength-hopping patterns and
1D (73, {6, 4, 3}, {2, 1, 1}, 1, {1/3, 1/3, 1/3}) OOC as
time-spreading patterns, a 2D variable-weight (23 ×
73, {6, 4, 3}, {2, 1, 1}, 1, {1/3, 1/3, 1/3})OOC could be
constructed. The codewords constructed in the basis
of these eight wavelengths mapping into the codeword
x0 (the block is [25,54,67]) are shown in Table 2, where
we employ (x, y) to denote an element of a 2D OOC
matrix (x is the number of time slot and y is the number
of wavelength). In addition, n = 73, m = 23, this code
has three types of hamming weight, which are wl = 6,

Table 1. (23,7,1) OCFHC

i Si

0 1 2 4 3 6 7 5

1 0 3 5 2 7 6 4

2 3 0 6 1 4 5 7

3 5 6 0 7 2 3 1

4 2 1 7 0 5 4 6

5 7 4 2 5 0 1 3

6 6 5 3 4 1 0 2

7 4 7 1 6 3 2 0
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Table 2. Codewords of 2D (23×73,{6,4,3},{2,1,1},1,{1/3,1/3,1/3})OOC Based on x0=[25,54,67]

Group 0 Group 1 Group 2 · · · Group 8

0 [(25, λ0), (54, λ0), (67, λ0)] [(25, λ1), (54, λ2), (67, λ4)] [(25, λ0), (54, λ3), (67, λ5)] · · · [(25, λ4), (54, λ7), (67, λ1)]

1 [(25, λ1), (54, λ1), (67, λ1)] [(25, λ2), (54, λ4), (67, λ3)] [(25, λ3), (54, λ5), (67, λ2)] · · · [(25, λ7), (54, λ1), (67, λ6)]

2 [(25, λ2), (54, λ2), (67, λ2)] [(25, λ4), (54, λ3), (67, λ6)] [(25, λ5), (54, λ2), (67, λ7)] · · · [(25, λ1), (54, λ6), (67, λ3)]

3 [(25, λ3), (54, λ3), (67, λ3)] [(25, λ3), (54, λ6), (67, λ7)] [(25, λ2), (54, λ7), (67, λ6)] · · · [(25, λ6), (54, λ3), (67, λ2)]

4 [(25, λ4), (54, λ4), (67, λ4)] [(25, λ6), (54, λ7), (67, λ5)] [(25, λ7), (54, λ6), (67, λ4)] · · · [(25, λ3), (54, λ2), (67, λ6)]

5 [(25, λ5), (54, λ5), (67, λ5)] [(25, λ7), (54, λ5), (67, λ1)] [(25, λ6), (54, λ4), (67, λ0)] · · · [(25, λ2), (54, λ0), (67, λ4)]

6 [(25, λ6), (54, λ6), (67, λ6)] [(25, λ5), (54, λ1), (67, λ2)] [(25, λ0), (54, λ4), (67, λ7)] · · · [(25, λ0), (54, λ4), (67, λ7)]

7 [(25, λ7), (54, λ7), (67, λ7)]

wm = 4 and ws = 3, such that the overall cardinality is
(8 + 8 × 7) × 6 = 384.

The cardinality of 1D VWOOC mentioned above is

Φ(n, {2w, w + 1, w}, A, 1, D)

=
(n − 1)

dl(2w)2
/

λl
a + dm(w + 1)w/λm

a +dsw(w − 1)/λs
a

, (1)

where A = {λl
a, λ

m
a , λs

a}, D = {dl, dm, ds}. Therefore, the
code cardinality of 2D VWOOC is given by

Φ(m × n, {2w, w + 1, w}, A, 1, D)

=
m(mn − 1)

dl(2w)2
/

λl
a + dm(w + 1)w/λm

a +dsw(w − 1)/λs
a

. (2)

It can be seen that the code cardinality of 2D VWOOC

has been significantly improved.
Using different address code-matrix, diverse QoS can

be achieved by different subscribers. Coming up the
next, the system performance of 2D VWOOCs with
l = 3 (i.e., supporting three types of QoS) is taken into
account. Here we suppose that the number of avail-
able wavelength is m, the set of hamming weights is
W = {wl, wm, ws}; the cardinality of the 2D VWOOC
is ΦC = Φl + Φm + Φs (Φs, Φm, and Φl indicate the
cardinalities of matrices with small, medium, and large
codeweights, respectively); the set of cardinality distribu-
tions is D = {dl, dm, ds}. Let q0 and qi denote the prob-
abilities of one hit between an address matrix originated
from group 0 or group i (for i = {1, 2, · · · , l−1}) and any
arriving address matrix in the same code set. Then, the
probability of one hit between two same-weight matrices
is obtained as

qs =
ws · Φs · (wsmdsΦOOC − 1) − wsm(ws − 1)

2n(Φs − 1) · Φs
, (3)

qm =
wm · Φm · (wmmdmΦOOC − 1) − wmm(wm − 1)

2n(Φm − 1) · Φm
, (4)

ql =
wl(wl − 2)(Φl − m) + w2

l mdlΦOOCΦl + mw2
l (wl − 2)

2nΦl(Φl − 1)
. (5)

Based on the number of hits between a large-weight
matrix and a medium-weight matrix being at most 1,
the probability of one hit between a large-weight matrix
and a medium-weight arriving matrix, ql,m, can be ob-
tained. Meanwhile, by analyzing all probabilities of one
hit between two unequal weight matrices, we find that
the medium-weight matrix has the same effect on large-
weight matrix and small-weight matrix. Thus, there ex-
ists

ql,m = qs,m =
mw2

mdmΦVWOOC

2n(Φm − 1)
. (6)

By the similar analysis, we have

ql,s = qm,s =
mw2

s dsΦVWOOC

2n(Φs − 1)
, (7)

qs,l = qm,l =
mw2

l dlΦVWOOC

2n(Φl − 1)
. (8)

The error probabilities Pe,s, Pe,m, and Pe,l of the users
with address matrices of weights ws, wm, and wl are given
by

Pe,s =
1

2

Ks+Km+Kl−1
∑

ls+lm+ll=ws

(

Ks − 1
ls

)

(qs)
ls(1 − qs)

Ks−1−ls ·

(

Km

lm

)

(qs,m)lm(1 − qs,m)Km−lm

·

(

Kl

ll

)

(qs,l)
ll(1 − qs,l)

Kl−ll , (9)
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Pe,m =
1

2

Ks+Km+Kl−1
∑

ls+lm+ll=wm

(

Km − 1
lm

)

(qm)lm(1 − qm)Km−1−lm ·

(

Ks

ls

)

(qm,s)
ls(1 − qm,s)

Ks−ls

·

(

Kl

ll

)

(qm,l)
ll(1 − qm,l)

Kl−ll , (10)

Pe,l =
1

2

Ks+Km+Kl−1
∑

ls+lm+ll=wl

(

Kl − 1
ll

)

(ql)
ll(1 − ql)

Kl−1−ll ·

(

Km

lm

)

(ql,m)lm(1 − ql,m)Km−lm

·

(

Ks

ls

)

(ql,s)
ls(1 − ql,s)

Ks−ls , (11)

respectively, where Ks, Km, and Kl are the numbers
of simultaneous users using matrices of codeweights ws,
wm, and wl.

A (23 × n, {6, 4, 3}, {2, 1, 1}, 1, {1/3, 1/3, 1/3}) triple-
weight OOC is employed as an example. Shown in
Fig. 1 are the error probabilities versus the codelength
n. As a whole, the system performance of users with
larger codeweights outperforms that of users with small
codeweights. For instance, the resulting error probabil-
ities of the system for 10 users with weights 3 and 4
are 3.26 × 10−3 and 2.78 × 10−4, respectively, when the
length n = 200. Hence, the error probability for the
large codeweight matrix is 1.03×10−8 that surpasses the
error probability for the small and medium codeweight
matrices two or three orders of magnitude.

Fig. 1. Bit error probabilities Pe versus codelength n for
triple-codeweight 2D VWOOC.

Fig. 2. Error probabilities versus the number of simultane-
ous users Kl and Ks for triple-codeweight 2D VWOOC with
Km = 10.

Figure 2 shows the error probability versus the numbers
of simultaneous users Ks transmitting small codeweight
matrices and Kl transmitting large codeweight matri-
ces when the number of users transmitting medium
codeweight matrices is fixed at Km = 10. The low-
est, middle, and topmost surfaces correspond to the per-
formances (i.e., Pe,s in Eq. (9), Pe,m in Eq. (10), and
Pe,l in Eq. (11)) of users with small-, medium-, large-
codeweight matrices, respectively. As a whole, the per-
formance worsens as the total number of simultaneous
users (i.e., Ks + Km + Kl) increases. The users with the
largest codeweights always perform the best.

When an OCDMA network is constructed by employ-
ing 2D VWOOC, the different QoS can be achieved and
the usage of network resource can be optimized by assign-
ing larger weight codewords to the services with higher
requirements of QoS and smaller weight codewords to the
services with lower requirements of QoS.

In conclusion, a new generation algorithm of 2D triple-
codeweight asymmetric optical orthogonal codes has
been proposed in this letter. The cardinality of code
produced in this way can be significantly improved. It is
shown that the systems with different weight codewords
have distinct performances, therefore, they can be em-
ployed to support different services with distinct types
of QoS and satisfy different requirements of QoS from
diverse multimedia or distinct subscribers, which makes
the better use of bandwidth resources in optical networks.
Thus, 2D triple codeweight asymmetric OOCs proposed
in this letter have the potential to be widely used.
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